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I. INTRODUCTION

Life as Americans know it depends on a reliable electric
grid. People need electricity to preserve food, pump water,
wash clothes, and operate increasingly digital businesses. The
COVID-19 pandemic, and the public health policies that
accompany it, have changed the way that people consume
electricity by radically altering people’s way of life. People
are spending less time in public and more time at home. Many
individuals able to work from home may not have visited their
offices in months. Trips to stores, even for essential products,
may be less frequent. Changes like these, aggregated over all
the inhabitants of a large city, can significantly impact the
behavior of that city’s entire electrical infrastructure. Electric
grid operators and energy policy-makers need to understand
the impact of extreme events, like pandemics, on the electric
grid so that they can maintain the grid’s reliability today and
prepare for disruptions in the future.

Quantifying the impact of the pandemic on a city’s electric-
ity demand is difficult. Electricity demand depends on many
factors, including weather, the day of the week, and the time
of the day, just to name a few [If] [2]. Simply comparing
demand across years without adjusting for variations in these
factors can lead to erroneous conclusions. To carefully assess
the pandemic’s impact, we needed to compare observed elec-
tricity demands with an estimate of the unknown demand that
would have occurred absent the pandemic, also known as the
“counterfactual” demand.

In this project, we approached the problem in two stages.
First, we created a long short-term memory (LSTM) neural
network algorithm to predict counterfactual demands [3] [4].
The algorithm predicted electricity demand in megawatts
(MW) for a given hour in a given city. The inputs to the
algorithm were hourly weather data for the given city and
calendar-related features (e.g. weekday, weekend day, hour
of day). We trained, validated, and tested the model on pre-
pandemic historical data. Second, we used the algorithm to
predict the counterfactual electricity demand each city might
have had absent the pandemic. Applying the algorithm hour-
by-hour to time series of input data for each city gave us coun-
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terfactual electricity demand time series for each city. Finally,
we drew conclusions about the impacts of the pandemic on
electricity demand by comparing our counterfactual scenario
to the observed electricity demands.

II. RELATED WORK

Several previous studies assess the impacts of the COVID-
19 pandemic on electricity demand [5] [6] [7]. We organize
them here in order of increasing model complexity and dataset
size. Bahmanyar, Estebsari, and Ernst considered changes
in electricity demand across six European countries. Their
study quantified impact by comparing electricity demand for
a week at the beginning of the pandemic (the second week
of April 2020) to demand for a similar reference week from
2019. They found that electricity demand in different countries
changed very differently. For example, they found that Spain’s
electricity demand decreased by 25% while Sweden’s demand
increased by 2% [5]. Agdas and Barooah evaluated changes
in electricity demand for the city of Gainesville, Florida. They
modeled electricity demand using an OLS linear regression.
To train the model, they used four weeks of data from
March 2019. They found that electricity demand in Gainesville
increased by 10% (95% CI: 2% to 16%) in 2020 compared
to 2019 when corrected for temperature and time-of-week
effects [7]]. Prol and O estimated changes in electricity demand
for several E.U. countries and large U.S. states. They trained
their model, a dynamic harmonic regression, to predict daily
electricity demand based on data from January 2015 to July
2020 [8] [6]. They found that “the cumulative decline in
electricity consumption within the 5 months following the
stay-home orders ranges between 3% and 12% in the most
affected EU countries and USA states” [6].

None of these studies used machine learning algorithms.
However, the electricity industry uses machine learning in
daily operations to predict demand. According to Hippert
et al., thirty U.S. electric utilities were using forecasting
algorithms based on a particular neural network in 1998 [9].
Hahn, Meyer-Nieberg, and Pickl observe that traditional feed-
forward neural networks are the most often applied type of
neural network. However, they also mention the use of radial



basis function networks, self-organizing maps, and recurrent
neural networks [2]. Since 2009, when Hahn, Meyer-Nieberg,
and Pickl published their review, the machine learning field has
advanced considerably. In this project, We sought to improve
on the results of the pandemic impact studies listed previously
by using more modern algorithms. In particular, we chose to
build a recurrent neural network based on the long short-term
memory (LSTM) algorithm [3] [4].

III. DATASET AND FEATURES

Although the previous studies of COVID-19’s impacts on
electricity demand used different models to predict electricity
demand, they all selected similar input variables. All three
studies mentioned previously recognized the critical roles that
weather and calendar effects play in driving electricity demand
[5 [6]] [7]. For this research project, we chose the COVID-
EMDA+ data hub as the data source [[10]. This data set
consisted of hourly weather, load, and COVID-19 data for
major U.S. cities and regions from January 2017 - September
2020. The raw data set was fairly clean, however some pre-
processing work was required to transform the raw data into
a more usable hourly format.

A summary of the seasonal load trends for select U.S.
cities can be seen in Figure [T} This figure suggests that date
plays an important role in predicting load magnitude. For
example, each city appears to have spikes in load over summer
months. Looking on a shorter time scale, we also noticed
oscillatory load behavior over the course of a day, which peak
around the mid-afternoon and evening hours. From this and
other exploratory data analysis, raw features including date,
temperature, and time of day emerged as strong predictors of
load patterns.
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Fig. 1. Seasonal Load Trends for 6 Major U.S. Cities

From these raw features, we engineered various other fea-
tures from our data set. To see how our variable depended
on the day, we extracted weekday, weekend, pre-weekday,
pre-weekend and holiday features from our data-set. To see
the correlation with respect to weather, we evaluated the

cumulative and exponential moving averages for each of the
weather variables along with the maximum, minimum and
mean day wise for the previous 24 hours.

After generating these features, we split our dataset into
four components for training, validation, testing, and COVID-
19 impact evaluation, respectively. Each component included
data from five cities (Boston, Chicago, Houston, Kansas City,
New York City) over date/time ranges as specified in Table
[l For models trained on a single city, we arbitrarily chose to
focus on Houston.

TABLE I
DATASET SPLITTING BY DATE RANGE, WITH TOTAL NUMBER OF
SAMPLES FROM ALL CITIES

Dataset Date Range # of Samples (5 cities)
Train Jan. 2017 - Sep. 2019 119,525
Validation Oct. 2019 - Dec. 2019 11,035
Test Jan. 2020 - Feb. 2020 7,200
COVID Comparison || Mar. 2020 - Sep. 2020 25,560

IV. METHODS

Before implementing an LSTM neural network, we created
two baseline models. These models gave us a better under-
standing of the relationships in our data. They also revealed
the flaws in assuming a linear relationship between electricity
demand and our predictors.

A. Baseline Models

1) Ordinary Linear Regression: A preliminary model was
generated using Houston feature/load data between January
2017 and September 2019 using a simple linear regression
model. This model was used to analyze the effect of weather
and time features on the load. The hypothesis function y(t)
and loss function J(6) are shown below.

y(t) = 0T 2(t) + ¢
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where ¢; = N'(0,02), is a standard normal error.

2) Autoregression with Prophet: Another preliminary
model was generated using Auto-regression to understand load
models using only the load variable. This model was used to
understand the dependence of the load variable on only past
observations. For this, implementation of auto-regression in
the package-FB Prophet was used. A MAPE is shown in the
results section. The hypothesis function, fitting function in the
form of maximum a posteriori estimate are shown below:

y(t) = g(t) + s(t) + h(t) +
y~N((k+Ax0)0t+ (m+A*y)+XB,0)
k,m ~ N(0,5), e ~ N(0,0.5),0 ~ £(0,7),y ~ N(0,0)
Here, ¢(t) is the trend function which is allowed with change-
points, s(t) captures seasonality of any form, and h(t) is the

holiday function. Also, ¢ is the model variance, A represents
the changepoints a(t), points where trend growth rate can



change, and J represents the trend rate approximated by a
Laplace distribution. [[11]]

B. Advanced Models- Long Short Term Memory Recurrent
Neural Networks (LSTM-RNN)

RNN’s are used to learn temporal variations and patterns
in various types of data. But RNN’s suffer from Short Term
Memory, because of the vanishing gradient problem, one
which limits the learning in most earlier states with small
gradient updates. LSTM’s were proposed as a solution to this
problem. The model adds gates and cell states in order to retain
longer sequence patterns in RNNs (see Figure [2] from [12]).
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Fig. 2. LSTM Memory Block with Operations

Forget Gate determines the amount of data to forget, Input
Gate determines which data to store, and Output Gate deter-
mines the information to let out. The cell state carries relevant
information throughout the sequence, so it can store pieces
of information over multiple time steps, hence reducing the
impact of short term memory [13].
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For this project, we chose to use an LSTM because it is well

adapted to time series applications, according to the advice of
a course TA.

To feed data in the form of tensors into our models, we had
to choose a “window-size”, which corresponds to the number

of samples of data in each slice of the tensor. Each slice
corresponds to a specified number of time steps of input and
the output is a single time step.

The concept of hidden units in an LSTM corresponds to the
dimensionality of the outputs of each gate. Our outputs would
be (hidden_units, 1) size.

We implemented our LSTM in Tensorflow using the Keras
interface. [14] [15].

V. EXPERIMENTS AND RESULTS

We used four main strategies to improve our LSTM model
predictions. The first was engineering new features to com-
pensate for visible prediction errors. The second was a hy-
perparameter tuning search. The third strategy was validation
and training error versus training set size plots as described
in Lecture 16 [16]. The fourth was experimentation with the
number and type of layers included in the model.

All strategies used the same error metrics to guide them.
Hahn, Meyer-Nieberg, and Pickl observed that previous studies
of electricity demand prediction frequently use Mean Absolute
Percentage Error (MAPE) [2]. We follow that convention in
this report, calculating MAPE as follows:

Here, T represents the total number of time steps (samples),
y; represents the observed electricity demand at time ¢, and
y; represents the predicted electricity demand at time {.

The first improvement strategy was engineering features
to compensate for visible prediction errors. We used graphs
similar to Figure [ to examine each model’s performance on
the validation dataset. Each feature was also normalized to
a mean of zero and standard deviation of one, such that no
one feature would dominate the training. After some initial
experimentation with the LSTM, it appeared that the model
tended to consistently underpredict or overpredict load at
various intervals throughout the year. This suggested that
certain seasonal trends were not being accounted for by our
model. To account for this, we added an additional week-
of-year feature to our dataset to account for this seasonal
variability.

It was also noted that the model generally was able to
capture the oscillatory behavior of the true load, however it
frequently overshot the “peaks” of these oscillations in its pre-
dictions. Because of this, sin and cosine functions were applied
to the hour, weekday, and week-of-year columns and added as
additional features to the dataset. These sin/cos terms helped
ensure that the cyclical nature of the hour/weekday/week-of-
year features was encoded into the model. For example, these
new features allowed our model to distinguish Week 52 of
2017 and Week 1 of 2018 as being only 1 week apart, rather
than 51 weeks apart (as the model would see without the
sin/cos terms accounting for this cyclic behavior).

The second improvement strategy was hyperparameter tun-
ing search. Each test run of the hyperparameter tuning ex-
periment altered one of the hyperparameters independently
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(while keeping each of the other hyperparameters constant)
to evaluate that hyperparameter’s effect on validation perfor-
mance. Due to the time-series nature of our data, it would
have been difficult to implement a method such as k-fold
cross validation, thus each run was compared with the same
validation set to keep the validation date range consistent. The
varied hyperparameters are shown in the Tested Values column
of Table [

TABLE III
HYPERPARAMETER TUNING TESTED AND SELECTED VALUES

Hyperparameter Tested Values Selected Value
window size [4, 12, 24, 168] 24
# layers [1,2,3] 1
# hidden nodes [10,25,50,75,100,150] 75
# training epochs [1,3,5] 3
# activation func. [tanh, sigmoid, relu, softmax] tanh

Each of the hyperparameters varied in its effect on per-
formance (i.e. validation set MAPE). The number of layers
did not appear to provide any positive effect in performance
(and also dramatically increased runtime), thus only 1 hidden
layer was used in the final model. Moderate values of window
size, number of hidden nodes per layer, and number of training
epochs (i.e. number of passes through a given dataset) seemed
to provide the best validation performance. Lower values of
these hyperparameters tended to lead to high bias and an un-
derfitting model, whereas higher values led to a high variance
overfitting model (in addition to longer runtimes). Lastly, using
a tanh activation function yielded the lowest MAPE, with relu
and sigmoid both close seconds in performance and softmax
much lower performance. After experimentation, it was found
that the combination of hyperparameters shown in the Selected
Value column of Table [ITI] yielded the lowest validation MAPE
and was thus used for the final model.

The third improvement strategy was the creation of plots
for validation and training error versus training set size, as
described by Professor Ng in his lecture Advice for Applying
Machine Learning [16]. First we produced this plot for a single
city, Houston. The plot was difficult to interpret because the
training and validation error trajectories were not smooth. We
hypothesize that this erratic behavior came from an interaction
between the way we set up our data folds for this experiment
and the seasonality of our data. Similar to the outputs of scikit-
learn’s TimeSeriesSplit function, our training and validation
sets grew from earlier times to later times instead of being
sampled randomly from our dataset [[17]. Unfortunately, the
strong seasonality of electricity demand, as seen in Figure
introduces substantive (not just random) variation in the
composition of both training and validation datasets as they
grow into new time periods. This may cause the erratic
validation and training error trajectories.

Even though the error versus training set size plot for a
single city was difficult to interpret, we noted that training
error and validation error were still far apart even at large
training sample sizes. We concluded that our model suffered
from high variance. To combat this, we re-implemented our

python code to allow it to process data from multiple cities
at a time. After this change, we re-created the error versus
training set size plot, this time using all cities’ data at once
(See Figure [3)). The result was a plot which had a smaller gap
between training and validation error. However, both errors
were still higher than our target. This suggests that we had
achieved lower variance, but still had high bias.
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The final improvement strategy was experimenting with
other neural network architectures known to perform well on
time series data. These included stacking n layers of LSTMs,
combining a CNN and an LSTM, and using a ConvLSTM
which is specifically used for spatio-temporal modeling. We
tried an implementation of each type of model and the MAPE
of each model was compared to see which models would work
best for our data. It was found that with the number of training
examples in our dataset, single layer and stacked LSTMs (our
default architectures) were the best options. This is because
their MAPEs were less than 10%, whereas the ConvLSTM,
CNN-LSTM and Time-Distributed layer networks produced
MAPEs of around 18-22%.

TABLE IV
PERFORMANCE OF SELECT MODELS DESCRIBED BY MAPE AND MSE ON
TEST DATASET (JANUARY 1, 2020 TO FEBRUARY 29, 2020)

Model MAPE MSE
Baseline | OLS regresssion 10.6% 2,083,500
Autoregression 9.8% 1,966,059
LSTM single city 4.6% 334,341
multi-city 4.1% 111,985

Hahn, Meyer-Nieberg, and Pickl describe many short-term
electricity demand forecasting models which predict a few
hours in advance.. Most of these research or production models
have a MAPE in the neighborhood of 2% [2]. Our models have
a slight advantage over these models because we aim to predict
on historical data. This means that we can include the weather
variables for the exact hour we are predicting for. With this
in mind, our goal was to build a model with a MAPE close



to 2%. Table [[V] shows the errors of our models on the test
dataset. Figure [ shows predictions for three cities on the test
set.
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Fig. 4. Multi-City Test Set 2-Week Predicted Load

VI. CONCLUSION
A. Electricity Demand Predictions

We tried three different models to forecast the electricity
demand across 5 cities in the US. Each progressively more
refined model brought our MAPE error rate closer to the
industry standard MAPE of 2% for similar models [2]. We
found that the single-layer LSTM model performed the best,
providing a MAPE of 4.1%. This model worked best because
of its ability to model the non-linear relationship between
weather, time and electricity demand.

For our next steps, we hope to collect more data across
more cities and use it to create a spatio-temporal model using
a combination of CNN, ConvLSTM and LSTM layers. This is
to capture small seasonal patterns using the CNN and LSTM
layers, and the ConvLSTM to capture the variability in patterns
across cities.

B. Impact of COVID-19

With our trained LSTM model in hand, we could evaluate
the impact of COVID-19 on electricity demand in U.S. cities.
Figures [5] and [] display the results for New York city, one of
the first epicenters of the COVID-19 pandemic. A visible drop
in peak electricity demand relative to our prediction is evident
on Monday, March 16". ABC News’ timeline of COVID-
19 for New York City mentions that the first two confirmed
COVID-19 deaths in New York City were reported on March
14t and that Governor Cuomo’s first work-from-home order
was put into effect on March 18, These events confirm the
sudden drop in electricity demand seen in Figure

Across all cities studied, the estimated changes in electricity
demand due to COVID-19 are shown in Table[V] These results
are in the same range as similar results reported by Prol and O.
[6]]. While our model error rate on test data (MAPE: 4.1%) is
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large compared to many of these changes, we can be confident
that the changes observed in Boston, Chicago, and New York
City exceed the size of our error. In the future, a more thorough
analysis of error by city could be undertaken to refine these
conclusions.

TABLE V
ESTIMATED PERCENTAGE CHANGE IN TOTAL ELECTRICITY DEMAND
DUE TO COVID-19 (MARCH 15™ TO JUNE 30™, 2020)

Our

City Change in Total Demand
Boston -4.8%
Chicago -5.7%
Houston +0.6%
Kansas City -1.4%
New York City -10.6%

VII. CODE REPOSITORY

code for all

models can

be

accessed

https://github.com/jgeiser47/CS229_Final_Project.

at


https://github.com/jgeiser47/CS229_Final_Project

VIII. CONTRIBUTIONS
A. Deep Dayaramani

I focused on brainstorming ideas on potential baseline mod-
els, data cleaning, experimental model analysis and producing
the features for the data matrices for the 5 cities, exploring
the second baseline model using Prophet and performing
cross validation and visualization for the model. I worked
on implementing the LSTM class combining Fletcher’s work
on scaling and model creation along with Josh’s data visu-
alization to make an easy interface for running experiments
and creating visualizations. I also worked on implementations
of the different model structures, to choose between single,
stacked, ConvLSTMs and other models. Further implemented
the test-on-splits function which provides the ability to create
the train-validation error plots on different metrics.

B. Josh Geiser

I worked on researching potential topic ideas, performing
experimental data analysis and plotting of the raw features,
initial data parsing/cleaning into a more workable CSV format,
setting up our GitHub repository structure, and training the
Baseline 1 (linear regression) model. After the milestone, I
implemented metric calculation capabilities to evaluate the
performance of each of our trained models, added in the
sin/cos features into our dataset, performed our hyperparam-
eter tuning experiment, and worked on data visualization
capabilities for the final report figures.

C. Fletcher Passow

I focused on understanding other studies assessing the im-
pacts of COVID-19 on electricity demand. I also corresponded
with our project TA about our question and what models would
be most appropriate. I took the lead on writing the introduction
and related work sections of this milestone report. Out of my
discussions with our TA came our decision to use an LSTM
neural network for our final model. After the milestone, I
implemented the multi-city version of our LSTM code. I also
took the lead in evaluating the impacts of COVID-19 based
on the predictions that our model made.
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